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ABSTRACT 
 

This research focuses on the effects of stiffeners and architectural opening on the steel shear 
wall topology optimization. To this aim, four relevant issues have been considered. The first 
issue is the optimality Pattern of the shear wall without stiffeners. The second is the 
Optimality Pattern of the shear wall with stiffeners in two directions. The third is the 
investigation on the topology optimization of the shear walls with fixed opening and the 
fourth is the multi-material topology optimization of the above issues. In the optimize 
process, the level set method based on the shape sensitivity and the finite element analysis 
for two-dimensional linear elastic problems has been used. The level set function implicitly 
indicated the boundaries of the design domain. Several numerical examples are used to 
demonstrate the optimal paths in the steel shear walls. The results show that optimal values 
have been changed by replacing stiffeners and creating openings in the wall, but the optimal 
topologies almost have a shape like a concentric bracing. Also, in the conventional shear 
walls (one material) the horizontal stiffeners have a significant effect on their performance. 
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1. INTRODUCTION 
 

Generally, the goal of the structural topology optimization is to find the appropriate 
distribution of materials into a proposed design domain, so that the optimal structure has 
prominent characteristics. Topology optimization is a material distribution method which is 
used to optimize a structural design to minimize a specific objective function criterion under 
design constraints and a physical model. In the pioneering research by Prager and Rozvany 
[1], Cheng and Olhoff [2], Bendsøe and Kikuchi [3, 4], and Zhou and Rozvany [5], 
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Topology optimization has been attracted considerable attention. Multitude topology 
optimization methods have been introduced and applied in literatures. The homogenization 
Method using an infinite number of micro-scale holes which are periodically distributed in 
the fixed design domain, transforms the topology optimization problem into the size 
optimization problem [6]. In this way, the determinant parameters of these holes are 
considered as design variables in each element of FEM. Also, artificial materials are 
presented to eliminate grayscale areas in optimum layouts [7-10], which is called Solid 
Isotropic Material with Penalization (SIMP). Jahangiry and Tavakkoli [11], used a 
combination of IGA and LSM topology optimization for problems which include local stress 
constraints. Also, Jahangiry and Jahangiri [44], used a combination of IGA and LSM 
topology optimization for two-dimensional heat-transfer problems. In their work, the 
reaction-diffusion equation was used to update the design variables. It can be seen that most 
of the optimization methods and published articles are focused on the single-material 
optimization [12-16]. However, as explained in [17], most of the real-world engineering 
design issues include several materials. Wenjie and Kazuhiro [18] solved multi-material 
topology optimization problems with the SIMP method. Wang and Wang [19] used the 
level-set method in other to multi-material topology optimization. Gou et al. [20] have been 
investigated the stress constraints topology optimization in continuum structures, including 
multiple heterogeneous materials. Zhang et al. [21] representation a new approach in order 
to achieve optimized topology with multiple materials based on the Moving Morphable 
Component (MMC) framework, in which the MMC approach was proposed by Guo et al. 
[22] to solve topology optimization problems with a finite number of design variables. In the 
field-phase approach, the Cahn-Hilliard equation was used to solve the time-dependent 
equation [23, 24], which is a general method to solve the multiphase structural topology 
optimization problems. The multi-material level set (MMLS) based topology optimization 
was proposed by Mai and Wang [25] in which the mean curvature flows acts as a 
regularization term Also, the ‘color’ level set method was employed in compliant 
mechanisms [26], heterogeneous objects [27], heat conduction structures [28] and stress-
constrained structures [29] problems. In [29, 30], the authors used precise shapes derivatives 
to optimize multi-phase topology. Recently, Vermaak et al. [31] introduced the continuous 
material property transition at the material interface and Liu et al. [32], investigated the 
correlation model. In addition, the multi-phase topology optimization has also been 
represented in the other frameworks, such as BESO (Bidirectional Evolutionary Structural 
Optimization) [33, 34] and phase fields [35, 36]. The multi-material topology optimization 
of the thermo-mechanical buckling constraints has been developed by C. Wu et al. [37]. In 
order to combine the thermal loads, a general thermal stress coefficient (TSC) was used to 
show the joint effects of Young's modulus, Poisson’s ratio and thermal expansion 
coefficient. In their work [38], a rational approximation of the material properties model 
(RAMP) was used to parameterize the multi-phase system of optimization. Jikai Liu and 
Yongsheng Ma [39] proposed a new level set based multi-material topology optimization. 
They introduced a new multi-material level set interpolation, in which overlapping regions 
are filled with an artificial weak material type and suppressed during the evolution process. 
Consequently, each material phase is represented by a single level set function. Therefore, 
the signed distance-based geometrical information is well preserved in each material phase 
which enables the independent length scale control. Hamid Ghasemi et al. [40] applied an 



TOPOLOGY OPTIMIZATION OF STIFFENED STEEL SHEAR WALL WITH … 

 

119

IGA multi-material level set-based topology optimization for the flexoelectric composites. 
Their work provides a new prospect on the simultaneous topology optimization of the 
elastic, flexoelectric and void phases in the design field, so that multi-material flexoelectric 
composites can be designed. Thanh Thien Banh and Dongkyu Lee [41], explained a multi-
phase topology optimization scheme for the continuum structures with crack patterns. Their 
work provides a method to evaluate the mechanical and the numerical interaction between 
multi-material and cracked problem within topology optimization template, including 
distribution of the different materials in a prescribed cracked structure and how to generate 
the information of the reinforcement of the cracked structure. 

Steel plate shear walls have been used in steel structures to withstand earthquake and 
wind forces. This system has many advantages compared to other conventional lateral load 
resisting systems. When used of stiffeners, they can effectively restrain the out-of-plane 
displacements and improve the shear strength and ductility. Since the preparation of such 
thin steel plates is simply not possible, a thicker plate is used with openings to reduce its 
stiffness [45]. On the other hand, the existence of opening is inevitable due to architectural 
considerations such as lighting. Also, it is sometimes necessary to introduce openings in the 
steel plate shear walls. This happens when the steel plate shear walls are used as windows in 
the facade panels. Kaveh and Farhadmanesh [46], investigated three well-known 
metaheuristic algorithms such as Colliding Bodies, Enhanced Colliding Bodies and Particle 
Swarm Optimization for size and performance optimization of the steel plate shear wall in 
multi-story systems. Kamgar et al. [47], investigated the effect of substituting the shape 
memory alloy (SMA) instead of steel on shear walls. Their results also show that composite 
of steel and shape memory alloy improve the performance of shear walls. Bagherinejad and 
Haghollahi [48, 49], used the topology optimization method to find the proper location of 
the openings. In their investigation, SIMP and MMA were used to parameterize the design 
variables and optimization, respectively. Therefore, this paper focuses on the multi-material 
optimality pattern of stiffened steel shear walls and investigation on optimality patterns of a 
stiffened steel shear wall with and without located openings in the design domain. For this 
purpose, in the topology optimization stage, the level set method with reaction-diffusion 
equation and in structural analysis phase, the finite element analysis has been used. 

 
 

2. DESIGN REPRESENTATION AND OPTIMIZATION VIA LEVEL SET 
METHOD 

 
In this section, the level set approach is briefly explained. If the Level Set method (LSM) 
[21] is used for topology optimization, it can be used of its intrinsic flexibility in dealing 
with topological changes. In LSM, domain boundaries are implicitly represented with a 
scalar hyper-surface in a higher dimension as a zero level set function which is changed over 
the time and provides unique advantages such as smooth boundaries and distinct interfaces, 
integrated shape and topology optimization. Therefore, any change in the )(x  during the 
optimization process can lead to moving the boundaries, merging or splitting the holes 
inserted in the structure. For the first time, osher and Sethian (1988) proposed the level set 
method, which is an implicit interface modeling and tracking technique which has been 
successful in various engineering fields, including image processing, scanning, 
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computational fluid dynamics, and structural optimization, etc. An implicit level set function 
)(x  can be defined as follows: 
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where D and D  are solid and void regions, respectively and x can be any point in the design 
structure. The nodal values of the LSF are used to generate a smooth Heaviside function, 
Which is obtained from multiplying the density of the material at each integration point of 
the elements by the value of the smooth Heaviside function. Thus, the elemental stiffness 
matrix is expressed as follows: 
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Where eK , gN , iB , iC
 and iw  are the element stiffness matrix, the number of integration 

points, strain displacement matrix, material stiffness matrix and integral weight at point i, 
respectively. In this work, in order to avoid numerical instability and singularity in stiffness 
matrices, the smooth Heaviside function and its derivative, Delta Dirac's function can be 
written as follows: 
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So that, α and Δ are small scalar values. 
 
 

3. SENSITIVITY ANALYSIS 
 
The strain energy J, minimization problem with a given amount of materials Vmax, can be 
written as follows: 
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where u is the unknown displacement field and ke is the elemental stiffness matrix and   
represents the design domain. Accordingly, the unconstrained function of the above problem 
is expressed as follows: 
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The sensitivity analysis of the objective function J and its constraints with respect to 

the node's positions are expressed as follows: 
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Based on the direct method in sensitivity analysis, 

u

 might be calculated by 

differentiating both sides of an equilibrium equation of the element, i.e. keu=f with respect 
to the design variables and note that f is independent of the design variables, so it can be 
expressed that, 

By differentiating from the equilibrium equation, i.e. keu=f with respect to the design 
variables, it can be expressed that: 
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Substituting Eq. (7) into Eq. (6) gives:  
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Also, the stiffness matrix of the element can be expressed as follows: 
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where, H( ) provides the integration over the material domain. Differentiating by node's 
positions yields,  
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Therefore, combining Eq. (8) and Eq. (10) gives the derivation of the compliance 

function. Also, the derivative of the volume constraint V is expressed as follows: 
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where,   denotes the structural boundaries. Therefore, the normal velocity field is 
expressed as follows: 
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Also, the Lagrange multiplier of the volume constraint is expressed as: 
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Based on the KKT conditions, if λ gets negative from the above calculations, it must be 

equal to zero. 
 

3.1 Multi-material level set interpolation 

As regards that a single level set function can only detect two phases through positive and 
negative signs, in this way, multiple level set functions are combined to interpolate several 
materials phases. In this work, the new method explained in [39] has been used. According 
to this method, each level set function is related to a material phase and the overlapping of 
the level set functions is allowed, but the overlapping areas are penalized with artificial 
materials which are weaker than any material phase. 

The multi-material interpolation is expressed in Eq. (14). 
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The derivation or sensitivity analysis of this multi-material interpolation is illustrated in 

Eq. (15). 
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3.2 Reaction-diffusion equation 

As mentioned previously, the reaction-diffusion equation, presented in [42, 43 & 44], is used 
instead of the conventional Hamilton-Jacobi equation in the present work. The time 
evolution equation with initial and boundary conditions of this method can be summarized 
as follows: 
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where, Δ denotes the Laplacian operator and τ is a positive diffusion coefficient term that 
controls the effect of regularization. Also, τ is used to assure that solutions exist and 
geometric constraints are applied. For this purpose, it could be used of fourth-order accurate 
finite difference approximation. The first line of Eq. (16) is the reaction-diffusion equation 
which is known as an Allen–Cahn equation [42, 43, 44, & 45], Which is used in the phase-
field method. 
 
 

4. NUMERICAL INVESTIGATIONS 
 
In this section, numerical examples will be investigated. Generally, three types of problem 

are explained. The first is the square domain which its aspect ratio ( L
H ) is equal to 1, the 

second is the rectangular domain which its aspect ratio is equal to 2 and the Third is the 
rectangular domain which its aspect ratio is equal to 0.5. 

In all examples, the modulus of elasticity and the Poisson's ratio of the strong ( ) 
materials are considered as 1 Pa and 0.34, respectively. Also, in the multi-material topology 
optimization problems, the modulus of elasticity and the Poisson's ratio of the weak ( ) 
materials are considered as 0.1 Pa and 0.20, respectively. 
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The concentrated load value is assumed to be P=1 N. The narrow bandwidth transition for 
the Heaviside function is considered as 01. . Also, the time step is considered 

 
max

,min3.0

v

yx
t


 . Where, vmax is the maximum velocity over the boundaries and Δx and 

Δy are the nodal distances in x and y-direction, respectively. Also, α in Eq. (3) is set to 1e−4. 
The regularization parameter  is set to 1e−6. Also, the material volume fraction is equal to 
40% for strong material and 20% for weak material of the entire volume of the structure for 
all problems. In all examples, the stiffness of the external frame is 100 times and the 
stiffness of the stiffeners is 10 times the shear wall stiffness.  

Example 1. A cantilever shear wall subjected to the concentrated loads at the end corners 
is considered as shown in Fig. 1. The H/L ratio equals 1, where L=1 m and H=1 m. In order 
to discretize the design domain, 1600 four-node elements, including 1681 nodes are 
employed and the nodal distances in x and y direction are Δx = Δy = 0.025m, respectively. 
Also, specific characteristics of architectural opening are demonstrated in Fig. 1. 

 

 
Figure 1. The design domain, loading and boundary condition of Example 1 

 

A 
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B 

 

C 

 
Objective 
Function:      4.42                               4.11                              4.08                              3.89 

Figure 2. (A) The stiffener pattern, (B) optimum layouts and (C) convergence history of the 
objective function and volume constraint for Example 1 

 

A 

 

B 

 

C 

 
Objective  
Function:     4.42                               3.87                               3.96                               3.56 

Figure 3. (A) The stiffener pattern, (B) optimum layouts and (C) convergence history of the 
objective function and volume constraint for Example 1 
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A 

 

B 

 

C 

 
Objective 
Function:   5.24                               4.92                               4.89                                 4.48 

Figure 4. (A) The stiffener pattern and located openings, (B) optimum layouts and (C) 
convergence history of the objective function and volume constraint for Example 1 

 

A 

 

B 

 

C 

 
Objective 
Function:   4.47                               3.98                               4.14                                3.61  

Figure 5. (A) The stiffener pattern and located openings, (B) optimum layouts and (C) 
convergence history of the objective function and volume constraint for Example 1 
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From the results, it has been observed that, the horizontal stiffeners do not affect the final 
topology, but the vertical stiffeners adjust the optimized layout, appropriately. It is also 
observed that in the square domain whose aspect ratio is equal to 1, in the one material 
topology optimization, the horizontal stiffeners have a significant effect on the performance 
of the optimized shear wall, but in the multi-material topology optimization, the vertical 
stiffeners have a significant effect on the performance of the optimized shear wall. Figs. 2-5 
(B) and 2-5 (C), illustrate the final layout and the iteration history of this optimization 
problem, respectively. 

Example 2. A cantilever shear wall subjected to the concentrated loads at the end corners 
is considered as shown in Fig. 6. The H/L ratio is equal to 2, where L=0.5 m and H=1 m. In 
order to discretize the design domain, 800 four-node elements, including 861 nodes are 
employed and the nodal distances in x and y direction are Δx = Δy = 0.025m, respectively. 
Also, specific characteristics of architectural opening are illustrated in Fig. 6.  

From the results, it has been observed that in the rectangular domain whose aspect ratio is 
equal to 2, in all topology optimization problems, the existence of stiffeners and openings do 
not much effect on the final topology. It is also observed that, in the one material topology 
optimization, the horizontal stiffeners have a significant effect on the performance of the 
optimized shear wall, but in the multi-material topology optimization, the vertical stiffeners 
have a significant effect on the performance of the optimized shear wall. Figs. 7-10 (B) and 
(7-10) (C), illustrate the final layout and the iteration history of this optimization problem, 
respectively. 

 

 
Figure 6. The design domain, loading and boundary condition of Example 2 
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A 

  

B 

  

C 

  
Objective 
Function:    9.82                               9.13                               8.94                               7.84 

Figure 7. (A) The stiffener pattern, (B) optimum layouts and (C) convergence history of the 
objective function and volume constraint for Example 2 

 

A 
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C 

 
Objective 
Function:    8.47                                 7.76                                8.06                                7.42 

Figure 8. (A) The stiffener pattern, (B) optimum layouts and (C) convergence history of the 
objective function and volume constraint for Example 2 
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A 

  

B 

  

C 

    
Objective 
Function:    10.12                             9.69                                8.96                                8.47 

Figure 9. (A) The stiffener pattern and located openings, (B) optimum layouts and (C) 
convergence history of the objective function and volume constraint for Example 2 
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C 

 
Objective 
Function:     8.91                               8.38                               8.88                               8.32 

Figure 10. (A) The stiffener pattern and located openings, (B) optimum layouts and (C) 
convergence history of the objective function and volume constraint for Example 2 

 
Example 3. A cantilever shear wall subjected to the concentrated loads at the end corners 

is considered as shown in Fig. 11. The H/L ratio is equal to 0.5, where L=1 m and H=0.5 m. 
In order to discretize the design domain, 800 four-node elements, including 861 nodes are 
employed and the nodal distances in x and y direction are Δx = Δy = 0.025m, respectively. 
Also, specific characteristics of architectural opening are illustrated in Fig. 11.  

From the results, it can be observed that in the rectangular domain which its aspect ratio is 
equal to 0.5, the horizontal stiffeners do not affect the final topology, but the vertical stiffeners 
change the optimized layout, appropriately. It is also observed that in the square domain 
whose aspect ratio is equal to 1, in the one material topology optimization, the horizontal 
stiffeners have a significant effect on the performance of the optimized shear wall, but in the 
multi-material topology optimization, the vertical stiffeners have a significant effect on the 
performance of the optimized shear wall. Figs. 12-15 (B) and 12-15 (C), illustrate the final 
layout and the iteration history of this optimization problem, respectively. 

 

 
Figure 11. The design domain, loading and boundary condition of Example 3 

 

A 
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B 

 

C 

    
Objective 
Function:     2.28                               2.13                               1.93                               1.67 

Figure 12. (A) The stiffener pattern, (B) optimum layouts and (C) Iteration history of objective 
function and volume for Example 3 

 

A 

 

B 

 

C 

Objective 
Function:     2.03                               1.78                                1.82                              1.56 

Figure 13. (A) The stiffener pattern, (B) optimum layouts and (C) Iteration history of objective 
function and volume for Example 3 

 

A 

 

B 
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C 

    
Objective 
Function:     2.31                                2.28                               2.12                              1.89 

Figure 14. (A) The stiffener pattern and located openings, (B) optimum layouts and (C) Iteration 
history of objective function and volume for Example 3 

 

A 

 

B 

 

C 

 
Objective 
Function:         2.25                            2.05                               2.09                              1.77 

Figure 15. (A) The stiffener pattern and located openings, (B) optimum layouts and (C) Iteration 
history of objective function and volume for Example 3 

 
 

5. CONCLUSIONS 
 
In this paper, the level set method is considered to form the topology of structure so that the 
zero contour of the function indicates the boundaries of the structure. Several steel shear 
walls are implemented as numerical examples to investigate the optimal pattern in which 
have various aspect ratios. For this purpose, at first, an optimal topology for each aspect 
ratio was obtained without any stiffeners. A second, by replacing the stiffeners in different 
directions, the changes in optimal topology and the magnitude of the objective function were 
investigated. A third, the optimal topology and value of the objective function in the multi-
material shear wall with and without stiffeners were also investigated for all examples 
mentioned above. A fourth, by replacing the architectural openings in the shear walls, the 
changes in the optimal topology and the value of the objective function were investigated in 
all samples. It should be noted that minimizing the strain energy, increases the structural 
stiffness and consequently, reduces the lateral displacements. Therefore, using the multi-
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material shear walls, decreased the strain energy and then, reduce the lateral displacements. 
Also, replacement of the architectural openings within the shear walls, due to the deviation 
of the optimal patterns from the openings, increased the strain energy. It should be noted that 
the external frame and the stiffeners are specified in black and red colors in optimal layouts, 
respectively. Also, the design variables related to the external frame and the stiffeners are 
considered inactive. This means that they will have no variation during the optimization 
process. According to this experience, reducing the aspect ratio increased the effect of 
stiffeners on the final layout and with a lateral loading, in the one material topology 
optimization, the horizontal stiffeners have more performance than vertical stiffeners, but in 
the multi-material topology optimization, it has been observed that the vertical stiffeners 
have more performance. However, using both horizontal and vertical stiffeners 
simultaneously creates the best conditions. Also, almost all optimal topologies will have a 
pattern similar to the concentric bracing. 
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